
Chapter 3

LONGITUDINAL PHASE SPACE

3.1 MOMENTUM COMPACTION

A bunch of charged particles has a spread of energy because of many reasons, for

example, random quantum excitation which changes the energy of the particles randomly

(for electrons only), intrabeam scattering which is just Coulomb scattering among the

particles, Touschek scattering [1] which is large-angle Coulomb scattering which converts

the transverse momentum of a particle into longitudinal, and last and most important of

all a means to counter collective instabilities through Landau damping. In an accelerator

ring or storage ring, particles with different energies have different closed orbits, their

lengths are given by

C = C0

[
1 + α0δ +O(δ2)

]
, (3.1)

where δ is the fractional spread in momentum and C0 is the orbit length of the so-called on-

momentum particle. The proportionality constant α0 is called the momentum-compaction

factor of the accelerator ring. The fraction momentum spread is related to the fraction

energy spread ∆E/E0 by

δ =
∆p

p0
=

1

β2

∆E

E0
. (3.2)

where p0 and E0 are the momentum and energy of the on-momentum particle. The

momentum-compaction factor of most accelerator and storage rings have α0 > 0, implying

that particles with larger energy will travel along longer closed orbits with more radial

excursions. Thus the period of revolution will be relatively longer. Therefore, particles

with lower energies will slip ahead by the time ∆T every turn, while particles with higher
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energies will slip behind. The particles will spread out longitudinally and the bunch will

spread out and disintegrate. The slip factor η is defined as

η =
∆T

T0
=

∆C

C0
− ∆v

v0
= α0 −

1

γ2
, (3.3)

where T0 and v0 are, respectively, the revolution period and velocity of the on-momentum

particle, and γ = E0/m, m being the particle rest mass. For most electron rings and high

energy proton rings, the particle velocity v is extremely close to c, the velocity of light.

We therefore have actually η ≈ α0 and we called the operation above the transition energy.

For low-energy hadron rings, the velocity term may dominate making η < 0 and we say

the operation is below the transition energy. Obviously the transition energy is defined as

Et = γtmc
2 and γt = α

−1/2
0 . There are also rings, like the 1.2 GeV antiproton ring LEAR

at CERN and many newly designed ones [2] that have negative momentum-compaction

factors or α0 < 0. In these rings, lower momentum particles have longer closed orbits

or larger radial excursions than higher momentum particles. Negative momentum com-

paction implies an imaginary γt and the slip factor will always be negative, indicating that

the ring will be always below transition. Some believe that such rings will be more stable

against collective instabilities [3]. Design and study of negative momentum compaction

rings have been an active branch of research in accelerator physics lately [4].

In order to have the particles bunched, a longitudinal focusing force will be required.

This is done by the introduction of rf cavities. Consider 3 particles arriving in the first turn

at exactly the same time at a cavity gap, where the rf sinusoidal voltage curve is at 180◦,

as shown in Fig. 3.1a. All three particles are seeing zero rf voltage and are not gaining

any energy from the rf wave. Assume the ring is above transition or η > 0. One turn

later, the on-momentum particle arrives at the cavity gap at exactly the time when the rf

sinusoidal voltage curve is again at 180◦ and gains no energy. The lower energy particle

arrives at the gap earlier by τ1, which we call time slip. It sees the positive part of the rf

voltage and gains energy, as illustrated in Fig. 3.1b. For the second turn, it will arrives

at the gap earlier by τ1 + τ2, where τ2 < τ1 because the particle energy has been raised

in the second passage. This particle will continue to gain energy from the rf every turn

and its turn-by-turn additional time slip diminishes. Eventually, this particle will have an

energy higher than the on-momentum particle and starts to arrive at the cavity gap later

turn after turn, or its turn-by-turn time slip becomes negative. Similar conclusion can be

drawn for the particle that has initial energy higher than the on-momentum particle. With

the rf voltage wave, the off-momentum particles will oscillate around the on-momentum

particle and continue to form a bunch. In reality, the particles lose an amount of energy
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Figure 3.1: Three particles are shown in the longitudinal phase planes. (a)

Initially, there are all at the rf phase of 180◦ and do not gain or lose any energy.

(b) One turn later, the on-momentum particle arrives with the same phase of

180◦ without any change in energy. The particle with lower energy arrives

earlier and gains energy from the positive part of the rf at phase < 180◦. The

particle with higher energy arrives late and loses energy because it sees the rf

at phase > 180◦.

Us every turn due to synchrotron radiation. This is compensated by shifting the rf phase

slightly from 180◦ to φs = sin−1(Us/Vrf) so that the on-momentum electron will see the

rf voltage at the phase φs when traversing the cavity gap. This particle is also called the

synchronous particle.

3.2 EQUATIONS OF MOTION

To measure the charge distribution in a bunch, we choose a fixed reference point s0

along the ring and put a detector there. A particle in a bunch is characterized longitu-

dinally by τ , the time it arrives at s0 ahead of the synchronous particle. We record the

amount of charge arriving when the time advance is between τ and τ + dτ . The result is

eρ(τ )dτ , where ρ(τ ) is a measure of the particle distribution and e is the particle charge.

The actual linear particle density per unit length is λ(τ ) = ρ(τ )/v, where v is the velocity

of the synchronous particle. Note that this charge distribution is measured at a fixed

point but at different times. Therefore, it is not a periodic function of τ . In one turn, the
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change in time advance is

∆τ = −ηT0δ . (3.4)

The negative sign comes about because the period of a higher-momentum particle is

larger above transition (η > 0) and therefore its time of arrival slips. During that turn,

the energy gained by the particle relative to the synchronous particle is

∆E = eVrf(sinφ− sin φs)− [U(δ)− Us] + C(〈F ‖0 〉 − 〈F
‖
0s〉) , (3.5)

where the subscript s stands for synchronous particle, and C is the ring circumference.

Note that as a first approximation, we do not distinguish between C and C0. The first

term on the right is the sinusoidal rf voltage and the second term is the radiation energy.

The third is the wake force defined in the previous section due to all beam particles ahead;

it can therefore be written as

〈F ‖0 (τ )〉 = −e
2

C

∫ ∞
0

dτ ′ρ(τ ′)W ′
0(τ ′ − τ ) . (3.6)

Notice that we have written, for convenience, the wake function as a function of time

advance. The 〈F ‖0s〉 is the wake force on the synchronous particle. It is a constant energy

loss, which is compensated by suitably choosing the synchronous phase φs.

The two equations of motion are related because the momentum spread is related

to the energy spread by δ = ∆E/(β2E0), and the rf phase seen is related to the time

advance,

φ− φs = −hω0τ , (3.7)

where ω0/(2π) = 1/T0 is the revolution frequency of the ring, Vrf is the rf voltage (the

peak value of the rf wave), and h is the rf harmonic, which is the number of oscillations

the rf wave makes during one revolution period. Here, q is absolute value of the charge

of the beam particle in the ring; we often write q = e because we are dealing mostly with

protons or electrons. The negative sign on the right-hand side of Eq. (3.7) comes about

because when the particle arrives earlier or τ > 0, it sees a rf phase earlier than the

synchronous phase φs. Writing as discrete differential equations, they become

dτ

dn
= −ηT0

β2

∆E

E0
, (3.8)

d∆E

dn
= eVrf [sin(φs − hω0τ )− sinφs]− [U(δ)− Us] + C(〈F ‖0 〉 + 〈F ‖0s〉) . (3.9)
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To simplify the mathematics, a continuous independent variable is needed instead of

the discrete turn number. Time is not a good variable here because it is complicated by

synchrotron motion and the acceleration process. We choose instead s, the distance along

the closed orbit of the synchronous particle. With τ and ∆E as the canonical variables∗,

the equations of motion for a particle in a small bunch become

dτ

ds
= − η

vβ2E0

∆E , (3.10)

d∆E

ds
=
eVrf

C
[sin(φs − hω0τ )− sin φs]−

U − Us
C

+ 〈F ‖0 〉 . (3.11)

In the absence of the wake potential, if we neglect the small difference between the energy

lost U(δ) by the off-momentum particle and the energy lost Us by the on-momentum

particle. for small amplitude oscillations, the two equations combine to give

d2τ

ds2
− 2πηheVrf cosφs

C2β2E0
τ = 0 . (3.12)

Therefore, the bunch particles are oscillating with the angular frequency ω0s = νs0ω0,

where

ν0s =

√
−ηheVrf cosφs

2πβ2E0
, (3.13)

is called the synchrotron tune and ω0s/(2π) the synchrotron frequency. The subscript “0”

indicates that these are the unperturbed small-amplitude values or with the wake potential

turned off. The negative sign inside the square root implies that φs should be near 180◦

in the second quadrant above transition (η > 0), but near 0◦ in the first quadrant below

transition (η < 0). When the oscillation amplitude is larger, the sine wave cannot be

linearized. The focusing force is smaller and the synchrotron tune will become smaller. In

other words, there will be a spread in the synchrotron tune which will be very essential to

the Landau damping of the collective instabilities to be discussed later. As the oscillation

amplitude continues to increase, a point will be reached when there is no more focusing

provided anymore. This boundary in the τ -∆E phase space gives the maximum possible

bunch area allowed and is called the bucket holding the bunch. Any particle that goes

outside the bucket will be lost.

If the radiation energy is neglected, the two equations of motion are derivable from

the Hamiltonian

H = − η

2vβ2E0

(∆E)2 − eVrf

Chω0

[
cos(φs − hω0τ )− cosφs − hω0τ sinφs

]
+ V (τ ) , (3.14)

∗This set of canonical variables should not be used if the accelerator is ramping.
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with the aid of the Hamiltonian equations
dτ

ds
=

∂H

∂∆E
,

d∆E

ds
= −∂H

∂τ
.

(3.15)

Here,

V (τ ) =
e2

C

∫ τ

0

dτ ′′
∫ ∞
τ ′′

dτ ′ρ(τ ′)W ′
0(τ ′ − τ ′′) . (3.16)

For small amplitude oscillations, the Hamiltonian simplifies to

H = − η

2vβ2E0
(∆E)2 − ω2

0sβ
2E0

2ηv
τ 2 + V (τ ) . (3.17)

In an electron ring, synchrotron radiation may provide damping to many collective

instabilities. Because this damping force is dissipative in nature, strictly speaking a

Hamiltonian formalism does not apply. However, the synchrotron radiation damping time

is usually very much longer than the synchrotron period. The fast growing instabilities will

evolve to their full extent before the damping mechanism sets in. Here, we are interested

mostly in studying those instabilities that grow within one radiation damping time of the

ring. For a time period much less than the radiation damping time, radiation can be

neglected and the Hamiltonian formalism therefore applies.

3.3 VLASOV EQUATION

We would like to study the evolution of a bunch that contains, say, 1012 particles. The

Hamiltonian in Eq. (3.14) has to be modified to include 1012 sets of canonical variables

in order to fully describe the bunch. The description of the motion of a collection of

1012 particles is known as the particle approach, and is often tackled in the time domain.

However, what are of interest to us are the collective behavior of the bunch like the

motion of its centroid, the evolution of the particle distribution, etc. In other words, we

are studying here the evolution of various modes of motion of these collective variables.

For 1012 particles, there are 1012 modes of motion. However, we will never be interested

in those modes whose wavelengths are of the magnitude of the separation between two

adjacent particles inside the bunch, because they will correspond to motions of very high

frequencies, and those motions are microscopic in nature. What we would like to study
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are the macroscopic modes of the bunch, or those having wavelengths of the same order

as the length of the bunch or the radius of the vacuum chamber. Sometimes, we may even

want to study modes with wavelengths one tenth of one hundredth of the bunch length

or beam pipe radius, but definitely not down to the microscopic size like the particle

oscillation. In other words, we go to the frequency domain and look at the different

modes of motion of oscillation of the bunch, our interest is on those few modes that have

the lowest frequencies or longest wavelengths. This direction of study is known as the

mode approach.

When collisions are neglected, the basic mathematical tool for the mode approach is

the Vlasov equation or the Liouville theorem [5]. It states that if we follow the motion of

a representative particle in the longitudinal or τ -∆E phase space, the density of particles

in its neighborhood is constant. In other words, the distribution of particles ψ(τ,∆E; s)

moves in the longitudinal phase space like an incompressible fluid. Mathematically, the

Vlasov equation reads

dψ

ds
=
∂ψ

∂s
+
dτ

ds

∂ψ

∂τ
+
d∆E

ds

∂ψ

∂∆E
= 0 . (3.18)

In terms of the Hamiltonian, it becomes

∂ψ

∂s
+ [ψ,H] = 0 , (3.19)

where [, ] denotes the Poisson bracket. Here, the time of early arrival τ and the energy

offset ∆E are the set of canonical variables chosen. The Poisson bracket is therefore

[ψ,H] =
∂ψ

∂τ

∂H

∂∆E
− ∂ψ

∂∆E

∂H

∂τ
. (3.20)

Together with the Hamiltonian equations of Eq. (3.15), Eq. (3.18) is reproduced.

3.4 EXERCISES

3.1. The Hamiltonian of Eq. (3.14) describes motion in the longitudinal phase space,

when the wake potential V (τ ) is not included. With the effects of the wake potential

neglected, find the fixed points of the Hamiltonian above and below transition, and

determine whether they are stable or not. The separatrices are the contours of fixed

Hamiltonian values that pass through the unstable fixed points. They separate

the region of libration motion (oscillatory motion) from rotation motion. Plot the

separatrices.
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3.2. The canonical variables τ0 and ∆E0 evaluated at ‘time’ s = 0 become τ1 and ∆E1

at an infinitesimal time ∆s later according to

τ1 = τ0 +
∂H

∂∆E0
∆s , ∆E1 = ∆E0 −

∂H

∂τ0
∆s . (3.21)

Consider the small phase-space area element dτ0d∆E0 = Jdτ1d∆E1. Show that

the Jacobian J = 1 to the first order of ∆s, implying that the area surrounding a

given number of particles does not change in time, which is Liouville Theorem. It

is possible to prove J = 1 to all orders of ∆s using canonical transformation. See,

for example, H. Goldstein, Classical Mechanics, Addison-Wesley, Chapter 8-3.
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